
Lessons From the Trenches

 Brief into to asynchronous processing
 Brief history, overview of Oracle Streams AQ
 Will dive deeply into single-consumer queues
 Will cover real-world traps encountered and their
solutions
 No time spent on multiple-consumer queues or
esoteric corners of AQ
 So this session is for novice and intermediate AQ
user and DBA (should be PL/SQL literate)

 Asynchronous Processing vs. Synchronous
 Middleware
 CPI-C, RPC, MOM
 MQM

 Oracle Streams AQ
 History and Features
 Setup
 Design
 Create
 Use (Enqueue and Dequeue)
 Maintain & Troubleshoot

 >> Hard Lessons <<

 Typical communication model employed in most
programming languages
 Call and wait
 Similar to live, interactive phone call

 Structured
 Routine A calls Routine B, which queries the database and

returns control to Routine A

 OO
 ObjectA.method1 sends a message to an ObjectB.method3,

which inspects the data it controls, and returns an answer to
ObjectA

System
Package
Module
Object

Routine
A

System
Package
Module
Object

Routine
B

request

response

transaction

 Dependencies on undependable things
 Length of execution
 Uncertainty of completion

 Event-driven processes
 Sensitive to response time

 Transaction management
 Lost work if trouble on other end

 Resource usage
 Idle time, resources wasted while waiting (either end)

 No hard link to the remote resource
 Leave message and hang-up
 Callee will return call when they can
 Similar to leaving a message in voicemail

 Structured and OO Programming:
 Client sends message and goes on with life
 Message receiver eventually processes the message and leaves

a message for the client in return.

 Great for things like workflows, publish/subscribe
communication/notification, progress meters, email
handlers and more.

System
Package
Module
Object

Routine
A

System
Package
Module
Object

Routine
Bmessage

message

transaction

transaction

 Other end can be slow, undependable; no longer
affects our end
 Event-driven processes
 Now have the appearance of responsiveness as work was

delegated

 Transaction management
 Previous work retained if other end fails

 Resource usage
 Resources efficiently utilized

 Asynchronous Processing vs. Synchronous
 Middleware
 CPI-C, RPC, MOM
 MQM

 Oracle Streams AQ
 History and Features
 Setup
 Design
 Create
 Use (Enqueue and Dequeue)
 Maintain & Troubleshoot

 >> Hard Lessons <<

 CPI-C
 Common Programming Interface for Communication
 Older. Mainframe and minis. MVS, OS/400, OS/2

 RPC
 Remote Procedure Call
 OO: Known as remote invocation
 Slightly less old. Unix, Microsoft, CORBA, others

 MOM
 Message Oriented Middleware
 Newer. Many vendors and flavors and implementations
 MQM is most popular flavor of MOM
 Message Queuing Middleware

 Asynchronous Processing vs. Synchronous
 Middleware
 CPI-C, RPC, MOM
 MQM

 Oracle Streams AQ
 History and Features
 Setup
 Design
 Create
 Use (Enqueue and Dequeue)
 Maintain & Troubleshoot

 >> Hard Lessons <<

 Oracle’s MQM solution
 Implemented using…what else?...the Oracle database
 Inherits the security, backup, transactional integrity, scheduling

and other benefits of using the world’s best database

 Oracle Advanced Queuing (8.0)
 Queue Monitor processes (ora_qmn_* processes)
 Job_queue_processes manually set

 Oracle Streams AQ (10.1)
 Queue Monitor Coordinator (ora_qmnc_* processes)
 Automatically adjusted

 Single-consumer queues
 Multi-consumer queues (for pub/sub)
 Non-persistent messages (now called buffered)
 Message ordering, prioritization, grouping, navigation,
selection, inspection, delay, retention, and expiration
 SQL-based access to queue, message metadata,
message payload
 Various interfaces including PL/SQL, C++ and Java
 Rich payload typing model. Scalar, user-defined and
XML.
 Much, much more

 Asynchronous Processing vs. Synchronous
 Middleware
 CPI-C, RPC, MOM
 MQM

 Oracle Streams AQ
 History and Features
 Setup
 Design
 Create
 Use (Enqueue and Dequeue)
 Maintain & Troubleshoot

 >> Hard Lessons <<

 AQ already installed and free to use
 As DBA…
 QSCHEMA wants to create a queue

GRANT EXECUTE ON sys.dbms_aqadm TO QSCHEMA;

GRANT EXECUTE ON sys.dbms_aq TO QSCHEMA;

 CUSTSCHEMA wants to enqueue
GRANT EXECUTE ON sys.dbms_aq TO CUSTSCHEMA;

 CLIENTSCHEMA wants to dequeue
GRANT EXECUTE ON sys.dbms_aq TO CLIENTSCHEMA;

 If app/svc connected to CLIENTSCHEMA will use JMS
GRANT EXECUTE ON sys.dbms_aqin TO CLIENTSCHEMA;

GRANT EXECUTE ON sys.dbms_aqjms TO CLIENTSCHEMA;

 Design message payload
 Identifiers
 Content and format

 Design queue
 Payload type?
 How many messages per minute/hour/day? Spikes?
 Multiple clients allowed to pull the message?
 How to handle errors? Notify anyone?
 Retries allowed? How many?
 Delay needed to fix problems?
 Is Oracle RAC involved?
 Need to browse or inspect messages?
 Grouping, sorting, tagging, priority needed?

(as QSCHEMA)
1. Create queue table
2. Create queue
3. Start queue
4. Grant enqueue/dequeue permissions

 Cleanup Script
SET SERVEROUTPUT ON

DECLARE

 l_queue_name VARCHAR2(30) := 'MY_Q';

 l_queue_table_name VARCHAR2(30) := 'MY_SQT';

 lx_queue_is_not EXCEPTION;

 lx_queue_running EXCEPTION;

 lx_queue_tab_is_not EXCEPTION;

 PRAGMA EXCEPTION_INIT(lx_queue_is_not,-24010);

 PRAGMA EXCEPTION_INIT(lx_queue_running,-24011);

 PRAGMA EXCEPTION_INIT(lx_queue_tab_is_not,-24002);

BEGIN

 BEGIN

 dbms_aqadm.drop_queue(queue_name => l_queue_name);

 EXCEPTION

 WHEN lx_queue_is_not THEN

 dbms_output.put_line(l_queue_name||' does not exist. Check spelling.');

 WHEN lx_queue_running THEN

 dbms_output.put_line('Stopping '||l_queue_name);

 dbms_aqadm.stop_queue(queue_name => l_queue_name);

 dbms_output.put_line('Dropping '||l_queue_name);

 dbms_aqadm.drop_queue(queue_name => l_queue_name);

 END;

 BEGIN

 dbms_aqadm.drop_queue_table(queue_table => l_queue_table_name, force=>TRUE);

 EXCEPTION

 WHEN lx_queue_tab_is_not THEN

 dbms_output.put_line(l_queue_table_name||' does not exist. Check spelling.');

 END;

END;

 Create queue table

BEGIN

 dbms_output.put_line('Creating MY_SQT');

 dbms_aqadm.create_queue_table(

 queue_table => 'MY_SQT'

 ,queue_payload_type => 'SYS.AQ$_JMS_MESSAGE'

 ,storage_clause => 'PCTFREE 0 PCTUSED 99'

 ,multiple_consumers => FALSE

 ,comment => 'My Queue Table: Supports the blah,

blah...');

END;

 Create queue and start it
 Name limited to 24 characters

BEGIN

 dbms_output.put_line('Creating MY_Q');

 dbms_aqadm.create_queue(

 queue_name => 'MY_Q'

 ,queue_table => 'MY_SQT'

 ,comment => 'My Queue: Routes the messages

from...');

 dbms_aqadm.start_queue(queue_name=>'MY_Q');

END;

 That’s it! You now have a running queue, waiting for
messages.
 In addition, Oracle created two “hidden” views on
top of your queue table:
 AQ$queue_table
 Very useful for monitoring and maintenance
 Nice to grant to schemas and roles that need to peer into queue

 AQ$queue_table_F
 Not sure why it exists…yet. No documentation.

 In order for anyone else to use the queue,
permissions must be granted.

BEGIN

 dbms_output.put_line('Granting enqueue privs');

 dbms_aqadm.grant_queue_privilege(

 privilege => 'ENQUEUE' -- also DEQUEUE or ALL

 ,queue_name => 'MY_Q'

 ,grantee => 'CUSTSCHEMA'

 ,grant_option => FALSE);

END;

BEGIN

 dbms_output.put_line('Granting dequeue privs');

 dbms_aqadm.grant_queue_privilege(

 privilege => 'DEQUEUE'

 ,queue_name => 'MY_Q'

 ,grantee => 'CLIENTSCHEMA'

 ,grant_option => FALSE);

END;

 Now use the appropriate programmatic interface to
enqueue or dequeue
 PL/SQL example (as CUSTSCHEMA):

DECLARE

 l_msg sys.aq$_jms_message;

 l_queue_options dbms_aq.enqueue_options_t;

 l_msg_props dbms_aq.message_properties_t;

 l_msg_id RAW(16);

BEGIN

 l_msg :=

sys.aq$_jms_message.construct(dbms_aqjms.jms_text_message);

 l_msg.set_text('<useful message here>');

 dbms_aq.enqueue(

 queue_name => 'QSCHEMA.MY_Q'

 ,enqueue_options => l_queue_options

 ,message_properties => l_msg_props

 ,payload => l_msg

 ,msgid => l_msg_id);

 COMMIT; -- very important; won't enqueue without commit

END;

 Pulls the first message off the queue by default
 Many modes and options and design decisions here
 By query, by identifiers, by grouping, browse mode, etc.

 Will rarely see messages in the queue table
 Unless dequeue transaction is failing
 Or sender requested a dequeue delay
 Or table created with retry_delay value

 Messages will be READY, PROCESSED or EXPIRED
 Dequeue request is a blocking operation

 Using the PL/SQL API:

DECLARE

 l_msg sys.aq$_jms_message;

 l_msg_text VARCHAR2(100);

 l_queue_options dbms_aq.dequeue_options_t;

 l_msg_props dbms_aq.message_properties_t;

 l_msg_id RAW(16);

BEGIN

 dbms_aq.dequeue(

 queue_name => 'QSCHEMA.MY_Q'

 ,dequeue_options => l_queue_options

 ,message_properties => l_msg_props

 ,payload => l_msg

 ,msgid => l_msg_id);

 l_msg.get_text(l_msg_text);

 dbms_output.put_line('Dequeued message text: ' ||

 CHR(10) || l_msg_text);

 COMMIT;

END;

 Asynchronous Processing vs. Synchronous
 Middleware
 CPI-C, RPC, MOM
 MQM

 Oracle Streams AQ
 History and Features
 Setup
 Design
 Create
 Use (Enqueue and Dequeue)
 Maintain & Troubleshoot

 >> Hard Lessons <<

 Queues and queue tables are self-maintaining
 You can stop a queue and alter it
 Administer through OEM and DBMS_AQADM

 Will generally be empty, unless nothing is
dequeuing, or dequeue transactions are failing
 If not empty, the system doing the dequeue must
be investigated, not the queue

 Useful message metadata in AQ$queue_table view
 Can query, but cannot perform DML on the queue table

 Oracle data dictionary queue views, like [G]V$AQ,
user/all/dba_queues and user/all/dba_queue_tables

SELECT queue

 ,enq_timestamp

 ,enq_user_id

 ,msg_state

 ,retry_count

 ,original_queue_name

 ,expiration_reason

 ,user_data

 FROM aq$my_sqt t

 ORDER BY 2 DESC;

SELECT t.queue

 ,t.enq_timestamp

 ,t.enq_user_id

 ,t.msg_state

 ,t.retry_count

 ,t.original_queue_name

 ,t.expiration_reason

 -- good to convert if message is numeric

 ,TO_NUMBER(t.user_data.text_vc) customer_id

 FROM aq$my_sqt t

 ORDER BY 2 DESC;

SELECT dq.owner

 ,dq.name

 ,dq.queue_type

 ,g.*

 FROM gv$aq g

 JOIN dba_queues dq

 ON dq.qid = g.qid;

 Expired or failed messages moved to the exception
queue, a queue table created by Oracle and named
AQ$queue_table_E
 Cannot enqueue directly to exception queue
 But can dequeue from it, allowing one to re-process
or re-enqueue failed messages
 Must formally “start” it and enable dequeuing

BEGIN

 -- Start the default exception queue as well so we can dequeue from it.

 dbms_output.put_line('Starting AQ$_MY_SQT_E exception Q');

 dbms_aqadm.start_queue(queue_name => 'AQ$_MY_SQT_E', enqueue => FALSE, dequeue => TRUE);

END;

 After that, the queue table view can tell us about
messages that are now in exception
 Using the query seen 2 slides ago:

 Tried notify/fix on entry into exception queue. Fail.
 Prefer to trap, notify and fix problem messages during
the retry_delay * max retries window

 We had the need to know about errors the second they happened.
 We attached an after update trigger to the queue table that looks for

any change in retry_count, and sends an email with message context.

 Created a package for this notification routine, and other common
queue-related operations.

<switch to PL/SQL Developer to show package>

CREATE OR REPLACE TRIGGER my_sqt_au_trg

 AFTER UPDATE ON my_sqt

 FOR EACH ROW

DECLARE

BEGIN

 IF (:old.retry_count <> :new.retry_count) THEN

 my_q_mgr.handle_retry(:old.user_data.text_vc);

 END IF;

END my_sqt_au_trg;

 Asynchronous Processing vs. Synchronous
 Middleware
 CPI-C, RPC, MOM
 MQM

 Oracle Streams AQ
 History and Features
 Setup
 Design
 Create
 Use (Enqueue and Dequeue)
 Maintain & Troubleshoot

 >> Hard Lessons <<

 Lots of developers running local Tomcat with copy
of the app, each with their own listener dequeuing
from the same queue on the shared Dev database.
 Random who ended up with the message
 Failures would retry the default 5 times < 1 second
and immediately go to exception. Default delay is 0
seconds. No time to diagnose. Frustrating.
 We bumped delay to 3600 seconds, and limited to 4
attempts: BEGIN

 dbms_aqadm.alter_queue(

 queue_name => 'MY_Q'

 ,max_retries => 4

 ,retry_delay => 3600);

END;

 Basic tenet of queuing is that each message will be
processed once and only once. In 10.2.0.4, try twice and
often twice!
 Bug (5590163) in Oracle allows messages in our single-
consumer queue to be dequeued twice.
 Logs showed the two nodes of the app server each
dequeuing same message in same second.
 Processing didn’t see the other transaction, and tried to
create duplicate records in downstream system.
 AQ was acting like it had never heard of ACID
transactions.
 Oracle’s “fix” created bug 7393292. Truly fixed in
10.2.0.5?

 Our system dequeuing did too much: too many
queries and DML statements before deciding to finish
the transaction. Too much stuff to go wrong.
 Lots of errors during initial months of dev and
testing. Queue table became encrusted with old,
failed messages. Needed to clean it out.
 Purge with DBMS_AQADM interface:
DECLARE

 l_purge_opt dbms_aqadm.aq$_purge_options_t;

BEGIN

 l_purge_opt.block := TRUE;

 dbms_aqadm.purge_queue_table(

 queue_table => 'MY_SQT'

 ,purge_condition => 'queue IN (''AQ$_MY_SQT_E'',''MY_Q'')'

 ,purge_options => l_purge_opt);

END;

 Also possible to pinpoint the messages to remove
using the purge_condition parameter, which operates
on the columns found in the queue table.
 Alias “qtview.” required for access to attributes of
the user_data column.

DECLARE

 l_purge_opt dbms_aqadm.aq$_purge_options_t;

BEGIN

 l_purge_opt.block := FALSE; -- don't block enqueue or dequeue attempts (this is the default)

 dbms_aqadm.purge_queue_table(

 queue_table => 'MY_SQT'

 ,purge_condition => 'queue = ''MY_Q'' AND qtview.user_data.text_vc = ''hello world'''

 ,purge_options => l_purge_opt

);

END;

 Different project got error on dequeue:
ORA-00942 table or view does not exist at this DBMS: sys.DBMS_AQIN line 651

 Run as queue owner: Good
 Run as other schema accessing the queue: Error
 Had to run trace to find missing priv
 Found that if the system dequeues in BROWSE
mode, the queue owner must grant SELECT access on
the AQ$queue_table_F view to dequeuing schema.

 During upgrade project, half DBs 10g, other half 9i.
 Found that enqueue script written for 10g didn’t
work on 9i.
 Turns out AQ$_JMS_MESSAGE has multiple
constructors in 10g, and only one in 9i.
 9i version that takes an integer (message type
constants defined in DBMS_AQ package spec) worked
great on both versions.
 10g constructors can accept a variable of the
message type, like SYS.AQ$_JMS_TEXT_MESSAGE,
but is more complex to use (3 more lines of code)

 Bill Coulam
 bcoulam@yahoo.com
 http://www.dbartisans.com

 Open Source PL/SQL “Starter” Application Framework
 http://plsqlframestart.sourceforge.net

mailto:bcoulam@yahoo.com
http://www.dbartisans.com/
http://plsqlframestart.sourceforge.net/

